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A liquid-metal flow driven by a rotating magnetic field in a finite-length cylinder is
studied numerically as a function of the field frequency. In the high-frequency case,
the magnetic field is expelled from the liquid-metal except in a skin-depth layer along
the side and top walls of the cylinder. In the corner region, where the skin-depth layers
intersect, the body force exhibits a large positive and negative azimuthal component
as well as inward radial and axial components which are rotational. The flows for
various frequencies are compared to the low-frequency flow.

1. Introduction
Rotating magnetic fields (RMF) have been used for decades to stir molten metals

during continuous casting (Moffatt 1978; Davidson 1992), and are now being used
to stir molten semiconductors during growth of single crystals (Dold & Benz 1999),
although this idea came up quite early as described in a pioneering work (Mullin
1958). In continuous casting, the Reynolds number is extremely large and the flow
is turbulent, but applications in crystal growth involve laminar flows (Priede 1993).
Most studies of flows induced by RMFs are based on two assumptions.

The first assumption is that the shielding parameter Rω = µpσωR
2 � 1, where µp

and σ are the magnetic permeability and electrical conductivity of the liquid metal,
ω is the circular frequency of the RMF, and R is the inside radius of the cylinder
containing the liquid. With Rω � 1, the magnetic field produced by the electric current
in the liquid is negligible compared to the magnetic field produced by the external
inductor, so that the latter penetrates throughout the liquid metal (Moffatt 1965;
Dahlberg 1972).

The second common assumption involves the interaction parameter N = σB2/ρω
and the magnetic Taylor number Tm = σωB2R4/2ρν2, where B is the characteristic
magnetic flux density of the RMF while ρ and ν are the density and kinematic
viscosity of the liquid metal. For most applications of RMFs in materials processing,
N is small and Tm is large, and the second common assumption is that N is sufficiently
small so that N1/2Tm1/6 � 1. The first consequence of this latter condition is that
the liquid velocity is much smaller than ωR, so that the flow has no effect on the
electromagnetic variables, and there are two sequential problems (Davidson 1992).
The solution of the first problem gives the electric current in the liquid, the magnetic
field if Rω is not small, and the electromagnetic (EM) body force on the liquid. The
solution of the second problem gives the liquid motion produced by the EM body
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force. The EM body force is the superposition of a steady axisymmetric force and
a force which is periodic in both time and the azimuthal coordinate and which has
a circular frequency of 2ω. The second consequence of N1/2Tm1/6 � 1 is that the
flow driven by the temporally and azimuthally periodic part of the EM body force
is negligible compared to the flow driven by the steady axisymmetric part of the EM
body force (Davidson & Hunt 1987; Martin Witkowski, Walker & Marty 1999).

There have been many studies of the steady axisymmetric flow in a finite-length
cylinder with the assumptions that Rω � 1 and N1/2Tm1/6 � 1 (for example Davidson
1991; Gelfgat, Priede & Sorkin 1991; Priede 1993; Davidson 1992). With these two
assumptions, the steady part of the EM body force is in the azimuthal direction and
drives a swirling azimuthal flow. A meridional flow with radial and axial velocity
components is driven by the axial variation of the centrifugal force of the swirling
flow and involves radially inward flows near axial boundaries where the azimuthal
velocity is zero. When the viscous diffusion of momentum is much smaller than the
meridional-flow momentum transport and when the azimuthal velocity is much larger
than the meridional ones, the important features of the flow are determined by the
total torque due to the steady EM body force, while the axial distribution of the body
force is not very important (Davidson 1992).

This paper treats flows induced by high-frequency RMFs for which Rω is not small.
A typical crystal growth configuration for which this parameter is large is discussed
by Spitzer (1999). Moffatt (1965) and Dahlberg (1972) treated the flow in an infinitely
long cylinder with the assumption that all variables are independent of the axial
coordinate and with large and arbitrary values of Rω . When Rω = O(1), the magnetic
field produced by the axial electric current in the liquid partially cancels the magnetic
field due to the external inductor in the interior of the liquid. When Rω is large,
this cancellation is complete except in a thin ‘skin-depth’ layer adjacent to the inside
surface of the cylinder. The magnetic field, electric current and EM body force are

confined to this layer which has a characteristic thickness of RR
−1/2
ω .

Here we treat the flow in a finite-length cylinder with electrically insulated walls
for arbitrary values of Rω and with the assumption that N1/2Tm1/6 � 1. Gelfgat,
Gorbunov & Kolevzon (1993) present some experimental measurements of the velocity
of a liquid mixture of indium, gallium and tin in a cylinder with a 400 Hz RMF.
Unfortunately they did not give the value of B for their RMF, so quantitative
comparisons with their results are not possible. Mazuruk et al. (1997) present an
approximate solution for the RMF in a finite-length cylinder which they state is
reasonably accurate for Rω < 100. They also present solutions for the liquid motion
neglecting the inertial terms in the Navier–Stokes equations. Unfortunately inertial
effects, specifically the meridional-flow momentum transport, are dominant rather
than negligible in actual crystal-growth applications of RMFs (Priede 1993).

2. Electromagnetic body force
The ampoule containing the liquid metal has a radius R and an axial length

2hR. The geometry with all lengths normalized by R is sketched in figure 1. We
use cylindrical coordinates r, θ, z with units vectors er, eθ, ez . The z-axis is along the
centreline of the cylinder. We assume that the magnetic field is produced by an
infinitely long cylindrical current sheet located at a radius aR, where a > 1. With
only small deviations from a real device, we take the magnetic permeability of the
material surrounding the current sheet to be infinite. The current distribution in the
sheet is idealized as J = −J0 cos (θ − ωt)ez , where J0 stands for the peak current per
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Figure 1. Geometry with lengths normalized by R.
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Figure 2. Contours plots of (a) fθ; (b) (∇× f)θ for h = 1, a = 1.6 and Rω = 150.

unit azimuthal length and t is time. The magnetic field produced by this current sheet
is uniform for Rω � 1.

The numerical solutions for the periodic magnetic field B and the periodic electric
current density j in the liquid for any value of Rω and for N1/2Tm1/6 � 1 were
presented in a previous paper (Martin Witkowski, Marty & Walker 2000). The
electromagnetic body force f = j × B involves a steady force and a periodic force
with a frequency of 2ω. With our assumption that N1/2Tm1/6 � 1, the periodic force
can be neglected. The steady part of f has an azimuthal component fθ , as well as
radial and axial components fr and fz , the curl of which gives

(∇× f)θ =

(
∂fr

∂z
− ∂fz

∂r

)
6= 0.

This is a major difference from an RMF with Rω � 1, for which (∇× f)θ = 0. Here
fθ and (∇× f)θ are normalized by σωRB2/2 and σωB2/2, respectively.

For all the results presented in this paper, a = 1.6 and h = 1. Details on the mesh
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size are given in § 3. For Rω = 150, the contours of fθ and (∇× f)θ are presented
in figure 2. Even for such a moderate value of Rω , fθ is confined to the emerging
skin-depth layers with the peak values close to the corner at r = 1, z = h. For Rω � 1,
fθ > 0 everywhere and the maximum is 0.74 at r = 1, z = 0. The negative values of fθ
near z = h for Rω > 1 were previously explained by Gelfgat, Gorbunov & Kolevzon
(1993), so we merely restate their explanation. For Rω � 1, the uniform magnetic field
penetrates throughout the liquid metal, Bz = 0, and only positive values of fθ are
produced by jz and Br . For Rω > 1, the electric currents partially expel the magnetic
field from the liquid metal. For the infinitely long cylinders treated by Moffatt (1965)
and Dahlberg (1972), the expelled magnetic field lines must go around the cylinder
in z = constant planes, so that Bz is still zero everywhere.

For a finite length cylinder, some expelled magnetic field lines still go around the
periphery at r = 1, but some now go over the top at z = h. The fraction of the field
lines produced by the inductor for z 6 h which go over the top of the cylinder rather
than around the periphery increases as h decreases. The deflection of the magnetic
field lines over the top leads to values of Bz in the liquid metal which increase as z
increases from 0 to h near r = 1, and then decrease as r decreases from 1 to 0 near
z = h. For both Rω � 1 and Rω > 1, jz must complete its circuit with a transverse
current in the liquid metal near z = h. For Rω � 1, this transverse current does not
produce an azimuthal body force because Bz = 0, but for Rω > 1, this transverse
current interacts with the Bz from the magnetic field lines going over the top of the
cylinder to produce fθ < 0 near z = h.

Figure 3 presents projections of the magnetic field and electric current density
vectors in the (θ − ωt = −π/2)-plane for Rω = 150 and for two points at r = 1
and for two points at z = h = 1. The transverse current jr > 0 at z = 1 turns to
flow axially downward with jz < 0 at r = 1. As z increases at r = 1, the number of
magnetic field lines deflected over the top accumulates so that the magnitudes of Br
and Bz increase. As r decreases from 1 at z = 1, the field lines which have cut across
the corner of the liquid metal at r = z = 1 become parallel to the top. Clearly j × B
produces fθ > 0 near r = 1 and the positive value of fθ increases with increasing z
until very close to z = 1 where jz = 0. Similarly j×B produces a negative value of fθ
near z = 1, but the magnitude of fθ quickly decreases as r decreases and B becomes
parallel to j .

For Rω � 1, the liquid metal can be divided into a core region where B = j = 0

to all orders in Rω , a skin-depth layer with O(R
−1/2
ω ) thickness adjacent to the side

at r = 1 where Br = O(R
−1/2
ω ) while Bθ and Bz = O(1), a skin-depth layer with

O(R
−1/2
ω ) thickness adjacent to the top at z = h = 1 where Br and Bθ = O(1) while

Bz = O(R
−1/2
ω ), and a corner region with ∆r = O(R

−1/2
ω ) and ∆z = O(R

−1/2
ω ) at r = 1,

z = h. If Rω = ∞, Br and Bz in the electrical insulators become infinite at r = 1, z = h,
namely they behave like ξ−1/3 where ξ = [(r − 1)2 + (z − h)2]1/2. This follows from
the solution of the Laplace equation for an external right-angle corner, e.g. ideal-fluid
flow over such a corner without separation (White 1999). In fact Br and Bz do not
become infinite because the magnetic field lines can cut across the corner region in the

liquid metal. Thus we conclude that Br and Bz become O((R
−1/2
ω )−1/3) = O(R

1/6
ω ) in the

corner region and in the adjacent O(R
−1/2
ω )×O(R

−1/2
ω ) part of the electrical insulator.

For Rω � 1, Br is independent of r and z, and Bz = 0, so that the maximum
fθ corresponds to the maximum |jz| at r = 1, z = 0. For Rω > 1, fθ = jzBr − jrBz
depends on the variations of both j and B. As z increases near r = 1, the increase in

−Br from O(R
−1/2
ω ) to O(R

1/6
ω ) is much larger than the decrease of −jz , so fθ increases
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Figure 3. Projections in the (θ − ωt = −π/2)-plane of some magnetic field (solid line and open
arrow) and current density (dash dotted and solid arrow) vectors in the corner region for Rω = 150.

until very close to z = h where jz = 0 and fθ = 0. Similarly as r increases near z = h,

the increase in Bz from O(R
−1/2
ω ) to O(R

1/6
ω ) is much greater than the decrease in jr , so

that −fθ increases, until very close to r = 1, where jr = fθ = 0. Since jr = O(R
−1/2
ω ) in

the skin-depth layer at z = h and in the corner region, while jz = O(R
−1/2
ω ) in the skin-

depth layer at r = 1 and in the corner regions, the magnitudes of both the positive

and negative values of fθ scale as R−1
ω for the two skin-depth layers and R

−1/3
ω for the

corner region. We present the evolution of the maximum and minimum value of fθ
as well as the value of fθ on the side and top layer as a function of Rω in figure 4.

The second change from Rω � 1 is that (∇ × f)θ is no longer zero. For the
low-frequency case, the average over one period of the radial or axial body force is
zero because there is a phase shift of one quarter-period between the components
of j and B which produce fr and fz . We present in figure 5 plots of −fr and −fz
in the skin-depth layer. As the frequency is increased, the phase shift decreases from
one-quarter to one-eighth of a period but this change in phase shift only occurs for
the inward force near each surface. For Rω � 1 near r = 1, the phase shift for fz is
a quarter-period, so that the local steady fz is zero, while the phase shift for fr has
changed to an eighth-period, giving a radially inward body force near r = 1. Similarly
for Rω � 1 near z = h, the phase shift for fr is still a quarter-period, while that for
fz has changed to an eighth-period. In the corner region, both fr and fz involve a
change in phase shift and give a large force toward the centre of the liquid metal. For
an infinite cylinder with Rω > 1, there is an inward force fr < 0 but it is independent
of z so (∇ × f)θ = 0. For a finite length cylinder, −fr near r = 1 increases as z
increases from 0 to h and −fz near z = h increases as r increases from 0 to 1, so that
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(∇× f)θ drives two toroidal cells of meridional flow for z > 0, both with flow along
r = 1 or along z = h toward the corner, flow from the corner toward the centre of the
liquid metal and finally flow in the interior back toward r = 1 or z = h to complete
both circulations.

We represent in figure 6 the evolution of the integral

I = 4π

∫ h

0

∫ 1

0

|(∇× f)θ| r dr dz (2.1)

as a function of Rω , which reveals the magnitude of the rotational body force. It has a
maximum value at approximately Rω = 6.5. For this value of Rω all three components
of the body force have approximately the same magnitude. As Rω becomes larger,

the magnitudes of fr and fz become O(R
−1/6
ω ) in the corner region and are therefore

larger than the O(R
−1/3
ω ) fθ in the corner region. For Rω � 1, the largest contribution

to the integral I in (2.1) comes from the corner region and is O(R
−2/3
ω ), but the value

of the integral has not yet approached this behaviour when Rω = 1000. Mazuruk
et al. (1997) did compare the magnitude of the driving force for the meridional flow
to that of the driving force for the azimuthal flow. This comparison is appropriate for
the viscous regime but for the inertial flow regime, which is our primary interest here,
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the relative importance of driving forces for the meridional flow is given, as shown in
(3.2b), by the ratio of (∂/∂z)(Γ 2/r3) to (∇× f)θ . This important ratio of source terms
for the meridional flow can only be analysed after the flow is known, and is discussed
in the next section.

3. Flow problem
3.1. Problem formulation

With N1/2Tm1/6 � 1, the Navier–Stokes equations reduce to equations governing
the meridional flow stream function ψ, the azimuthal vorticity Ω and the angular
momentum Γ , which are related to the dimensionless velocity V = vrer + vθeθ + vzez
by

vr =
1

r

∂ψ

∂z
, vz = −1

r

∂ψ

∂r
, Γ = rvθ, Ω =

∂vr

∂z
− ∂vz

∂r
. (3.1a–d )

The Navier–Stokes equations reduce to

∂2ψ

∂r2
− 1

r

∂ψ

∂r
+
∂2ψ

∂z2
= rΩ, (3.2a)

∂Ω

∂t
+
∂(vrΩ)

∂r
+
∂(vzΩ)

∂z
− ∂

∂z

(
Γ 2

r3

)
= ∆Ω + Tm (∇× f)θ, (3.2b)

∂Γ

∂t
+
∂(vrΓ )

∂r
+
vrΓ

r
+
∂(vzΓ )

∂z
=

(
∂2Γ

∂r2
− 1

r

∂Γ

∂r
+
∂2Γ

∂z2

)
+ Tm rfθ, (3.2c)

where V , ψ, Γ and Ω are normalized with a viscous velocity scale ν/R and R. Since
the flow is symmetric about the plane at z = 0, we treat only z > 0 with the boundary
conditions

Γ (0, z) = Γ (r, h) = Γ (1, z) = 0, (3.3a)

ψ(0, z) = ψ(r, h) = ψ(1, z) = 0, (3.3b)
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∂ψ

∂r
(1, z) =

∂ψ

∂z
(r, h) = 0, (3.3c)

where r ∈ [0, 1] and z ∈ [0, h]. The stream function ψ (and as consequence the vorticity
Ω) is an odd function of z while the angular momentum Γ is even. The evaluation of
the vorticity on the wall results from equation (3.2a) along with (3.3b) and (3.3c) giving

Ω(0, z) = 0, Ω(1, z) =
∂2ψ

∂r2
(1, z), Ω(r, h) =

1

r

∂2ψ

∂z2
(r, h). (3.4)

This time-dependent set of equations for the fluid flow problem has been solved
with a classical ADI (alternating direction implicit) scheme in time and a second-
order finite difference scheme in space. The vorticity on the boundary is computed
using the Thom formula. As an example for the top wall: riΩi,w = 2ψi,w−1/(∆z)

2 where
subscript i is the index for the radial grid, w is the index for the wall and ∆z the axial
mesh size. This first-order approximation to (3.4) is in fact a second-order-accurate
approximation to (3.3c). This topic is discussed by Spotz (1998). The technique used
is derived from the work of Sørensen & Phuoc Loc (1989). The main changes were to
add the electromagnetic body force and to simplify the code using a regular grid and
a second-order accurate solver from fishpack (Sweet 1977) for the Poisson equation
(3.2a) instead of the solver based on a fourth-order Hermitian approximation used in
the original work.

We had to ensure that both the skin-depth layer and the Bödewadt-like layer were
properly resolved. For simplicity and to avoid spurious results due to interpolation,
we used the same mesh for the electromagnetic and the flow computations. In the
low-frequency case (i.e Rω � 1), the Bödewadt-like layer on the top wall is the most
restrictive condition while for the large-frequency case the skin-depth layers on both
the side and top walls require a fine grid. We choose the mesh size so that at least
5 or 6 points are included in each layer. In § 3.2, we present calculations for Rω =
0, 20, 100, 150, 300, 1000. The corresponding meshes chosen are (nr×nz = 76×101) for
the first four values of Rω , (nr×nz = 106×141) for Rω = 300 and (nr×nz = 166×221)
for the last. The variables nr and nz are respectively the number of grid points in
the radial and axial direction including the boundary points. In order to keep the
flow in an inertial regime, we adjust the value of Tm so that the maximum value
of vθ is 500. While we are only interested in a steady-state solution, we integrate
our double-precision computation to the regime where no variations (to machine
precision) were observed between two successive time steps in the time-stepping code.
The only exception to that is the result for Rω = 20 where no stable steady state could
be reached. We then used a different iterative code based on the Newton method that
computes only steady solutions to obtain the result presented for this particular value
of Rω . The study of the stability or multiplicity of solutions is beyond the scope of the
present paper. The stability analysis is currently limited to the low-frequency case and
axisymmetric disturbances for the confined geometry (Grants & Gerbeth 2001) or to
radially unbounded domains for non-axisymmetric disturbances (Lingwood 1997).

3.2. Results for the velocity field

The evolution of the flow for increasing Rω is presented in figures 7 and 8. In figure 7,
as Rω is increased, the location of the maximum value of vθ moves from r = 0.83 and
z = 0 for Rω = 0 to r = 0.97 and z = 0.93 for Rω = 1000. This location has already
moved to z = 0.65 by Rω = 20. The maximum value of vθ is following the maximum
value of fθ , as illustrated by figure 2(a). For Rω = 0, vθ is close to a linear variation
with r for 0 < r < 0.7 and 0 < z < 0.7. As Rω is increased, vθ for r < 0.5 decreases,
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and there is no azimuthal motion at these small radii for large values of Rω . While
the maximum value of vθ is located near r = 1 and z = h for Rω > 100, there are
still significant values of vθ for 0.5 < r < 1 and z < 0.6, and these values are nearly
independent of z. The values of fθ in this region are also nearly independent of z, as
indicated in figure 2(a).

In figure 7(c), there are small negative values of vθ near z = h for r < 0.7. This
reverse azimuthal motion is clearly associated with the negative values of fθ in
figure 2(a), but the minimum value of vθ occurs at a smaller radius than the minimum
value of fθ for Rω = 100. Near r = 1 and z = h, the meridional convection of positive
angular momentum from the region with fθ > 0 dominates over the negative fθ for
Rω = 100. As Rω is increased from 100, the minimum value of vθ becomes larger
and moves radially outward, reflecting an increasing dominance of fθ < 0 over the
meridional convection of positive vθ . For Rω = 1000, the minimum value of vθ is
located at r = 0.92 and z = 0.98, and its magnitude is nearly a third of the maximum
value of vθ . This reflects the fact that very large positive and negative values of fθ
occur in the R

−1/2
ω × R−1/2

ω corner region for Rω � 1. Gelfgat et al. (1993) found
reverse azimuthal motion near z = h in their experiments with a 400 Hz RMF. In
the inertialess numerical results of Mazuruk et al. (1997), vθ < 0 near z = h for
Rω > 1. Their analysis would predict a region with vθ < 0 for Rω = 20, but figure 7(b)
shows that the radially inward convection of positive angular momentum near z = h
completely overwhelms fθ < 0 for Rω = 20 in the inertial regime.
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Figure 8. Evolution of the contours of ψ with Rω . (a) Rω = 0, Tm = 5.57 × 104, ψ = k for k = 1
to 10; (b) Rω = 20, Tm = 4.17 × 105, ψ = k for k = −4 to 8; (c) Rω = 100, Tm = 4.32 × 106,
ψ = 0.5k for k = −2 to 10; (d) Rω = 150, Tm = 7.62× 106, ψ = 0.5k for k = −1 to 8; (e) Rω = 300,
Tm = 2.06× 107, ψ = 0.5k for k = −2 to 6; (f) Rω = 1000, Tm = 1.34× 108, ψ = 0.5k for k = −6
to 5.

Positive and negative values of ψ represent respectively counterclockwise and
clockwise circulations in the (r, z)-plane. In figure 8(a) for Rω = 0, there is a single
counterclockwise meridional circulation with radially inward flow near z = h. Since
(∇×f)θ = 0 for Rω = 0, this meridional circulation is driven by the negative values of
∂(v2

θ)/∂z near z = h. As the radially inward flow inside the Bödewadt-like boundary
layer at z = h turns to flow axially downward, there are spatial oscillations in both
the meridional streamlines in figure 8(a) and the values of vθ in figure 7(a). These
spatial oscillations are typical of flows leaving boundary layers with large angular
momentum, e.g. Bödewadt and Ekman layers. The meridional flow for Rω � 1 has
been described by Davidson (1992).

As Rω is increased from zero, the meridional flow is affected both by the emergence
of non-zero values of (∇× f)θ , whose magnitude is illustrated in figure 6, and by the
evolution of the spatial distribution of ∂(v2

θ)/∂z, as illustrated in figure 7. As Rω is
increased in figure 8, the counterclockwise meridional circulation moves upward and
outward toward the corner at r = 1 and z = h. For Rω = 20 in figure 8(b), there is less
meridional flow for r < 0.3 because the values of vθ here have decreased, and there is
less inward driving force near z = h for r < 0.3. The maximum value of vθ has moved
upward to z = 0.65 in figure 7(b), so that ∂(v2

θ)/∂z > 0 for z < 0.65 and r > 0.8.
This drives a clockwise meridional circulation for r > 0.7 and z < 0.5 in figure 8(b).
The radially inward flow near z = 0 in figure 8(b) convects low-angular-momentum
fluid away from the wall at r = 1, leading to the inward deflection of the vθ contours
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Figure 9. Contours of ψ for Rω = 150 and Tm = 7.62× 106 with (a) (∇× f)θ = 0, (b) fθ = vθ = 0.
(a) ψ = 0.5k for k = −3 to 8, (b) ψ = 0.5k for k = −9 to 2.

near z = 0 for r > 0.6 in figure 7(b). Time-dependent flow probably emerges from the
instability of this clockwise circulation near r = 1 and z = 0.

For Rω = 100 in figure 8(c), the counterclockwise meridional circulation has moved
toward r = 1 and z = h and is confined between two clockwise circulations. The
clockwise circulation near r = 1 has moved upward as the maximum value of vθ has
moved upward, so that now ∂(v2

θ)/∂z > 0 for z < 0.87 and r > 0.8. The clockwise
circulation near z = h is being driven both by the (∇ × f)θ > 0 in figure 2(b)
and by the region where ∂(v2

θ)/∂z > 0 above the vθ = 0 contour in figure 7(c). As
Rω is increased from 100 in figures 8(d) and 8(e), the counterclockwise meridional
circulation continues to diminish in magnitude and to move toward the corner, the
clockwise circulation near r = 1 becomes weaker, and the clockwise circulation near
z = h becomes stronger and moves radially outward. For Rω = 1000 in figure 8(f), the

meridional velocity inside the R
−1/2
ω ×R−1/2

ω corner region near r = 1 and z = h is much
larger than the meridional velocity elsewhere. The counterclockwise circulation has
moved into the lower right part of the corner region, while the clockwise circulation
has moved into the upper left part and has become stronger than the counterclockwise
circulation.

The ratio of the integral I , defined by equation (2.1), to

4π

Tm

∫ h

0

∫ 1

0

∣∣∣∣∂v2
θ

∂z

∣∣∣∣ dr dz (3.5)

is a characteristic ratio of the source terms, (∇ × f)θ and ∂(Γ 2/r3)/∂z, in the az-
imuthal vorticity transport equation (3.2b). This ratio increases monotonically as Rω
is increased and has the values 0, 0.03, 0.58, 0.97, 2.1 and 8.6 for Rω = 0, 20, 100, 150,
300 and 1000, respectively. For Rω 6 20, the axial variation of azimuthal velocity is
the dominant source term, and for Rω = 1000, (∇× f)θ is the dominant source term.
Indeed, the two meridional circulations in figure 8(f) coincide with the positive and
negative values of (∇× f)θ for Rω = 1000.

We can explore the dependence of the meridional flow on these two source terms
by artificially setting each term equal to zero. We illustrate this for Rω = 150 when
our characteristic ratio indicates that the roles of the two source terms are equal. The
meridional streamlines with (∇× f)θ = 0 and with the fθ term present for Rω = 150
are shown in figure 9(a). The only significant difference between figures 8(d) and
9(a) is the absence of the clockwise circulation near z = h in figure 9(a), indicating
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that this circulation is produced by (∇× f)θ . The magnitudes of the counterclockwise
circulation and of the clockwise circulation near r = 1 are nearly the same, indicating
that both of these circulations are driven by the axial variation of azimuthal velocity,
with only small effects due to (∇× f)θ , even though the characteristic ratio of the two
source terms is 1. Davidson et al. (1999) came to a similar conclusion.

The meridional streamlines with fθ = 0 and with the (∇ × f)θ term present for
Rω = 150 are shown in figure 9(b), while vθ = 0. The two circulations in figure 9(b)
are roughly equal to those in figure 9(a), but the directions are opposite. The only
similarity between the streamlines in figures 8(d) and 9(b) is the small clockwise
circulation near z = h in figure 8(d). We conclude that the meridional circulation for
Rω = 150 is dominated by the axial variation of azimuthal velocity in spite of the fact
that the characteristic ratio is 1. The source term (∇× f)θ does not become dominant
until Rω = 1000. There are some similarities between figures 8(f) and 9(b), namely
a strong clockwise circulation above and to the left of a weaker counterclockwise
circulation, both being close to the corner at r = 1 and z = h.

4. Conclusions
This paper is focused on the evolution of the flow driven by an RMF as Rω

is increased for a fixed Reynolds number. The changes occur because there is a
spatial redistribution of the azimuthal body force toward the corner at r = 1 and
z = h and because the radial and axial body forces involve a non-zero curl which
drives flows along both r = 1 and z = h toward the corner. Davidson, Short &
Kinnear (1995) state (i) that the lack of importance of the axial distribution of fθ
depends on the coupling between an inviscid central core and a Bödewadt-like layer,
and (ii) that this argument fails when the boundary becomes parallel to the axis of
rotation so that there is no Bödewadt-like layer. The results here indicate that the
axial distribution of fθ is important near r = 1. For Rω > 100, the significant values
of both fθ and (∇ × f)θ are confined to the corner region near r = 1 and z = h,
and most of the flow becomes concentrated in this corner region as Rω is increased
to 1000. The scale for the meridional velocities is difficult to evaluate since both
(∇× f)θ and ∂(Γ 2/r3)/∂z compete to drive the flow so that it fails to exhibit a clear
regime dependence. Nevertheless, the numerical results show that the flow rate of the
meridional motion has diminished but the maximum velocities are still comparable
to those in figures 8(a) and 8(f) .

The motivation for this research was to determine if a high-frequency RMF
would be better than a low-frequency RMF for crystal-growth processes. Our results
generally indicate that a high-frequency RMF would produce a less desirable flow in
the molten semiconductor. One objective of an RMF is to provide good mixing over
the entire melt. The meridional circulation in figure 8(a) for Rω = 0 provides the most
extensive mixing, while the mixing becomes progressively more concentrated near the
corner as Rω is increased. Periodic flows are undesirable in crystal growth because
they produce spatial oscillations in the concentration of the additive or dopant in the
crystal. Since with a fixed Reynolds number, the flow become periodic when Rω is
increased from 0 to 20, low-frequency RMFs again appear to be better.

We wish to thank anonymous referees for constructive remarks. This research was
supported by the US National Aeronautics and Space Administration under Grant
NAG 8–1453.



Liquid-metal flow with a high-frequency RMF 143

REFERENCES

Dahlberg, E. 1972 On the action of a rotating magnetic field on a conducting liquid. Tech. Rep.
AE–447. Aktiebolaget Atomenergi, Studsvik, Sweden.

Davidson, P. A. 1991 Electromagnetic stirring of steel and aluminium. In Magnetohydrodynamics in
Process Metallurgy (ed. J. Szekely, J. W. Evans, K. Blazek & N. El-Kaddah), pp. 241–249. The
Minerals, Metals and Materials Society.

Davidson, P. A. 1992 Swirling flow in an axisymmetric cavity of arbitrary profile, driven by a
rotating magnetic field. J. Fluid Mech. 245, 669–699.

Davidson, P. A. & Hunt, J. C. R. 1987 Swirling recirculating flow in a liquid-metal column
generated by a rotating magnetic field. J. Fluid Mech. 185, 67–106.

Davidson, P. A., Kinnear, D., Lingwood, R. J., Short, D. J. & He, X. 1999 The role of Ekman
pumping and the dominance of swirl in confined flows driven by Lorentz forces. Eur. J. Mech.
B/Fluids 18, 693–711.

Davidson, P. A., Short, D. J. & Kinnear, D. 1995 The role of Ekman pumping in confined,
electromagnetically-driven flows. Eur. J. Mech. B/Fluids 14, 795–821.

Dold, P. & Benz, K. 1999 Rotating magnetic fields: fluid flow and crystal growth applications.
Prog. Cryst. Growth Charact. Mat. 38 (1–4), 7–38.

Gelfgat, Y. M., Gorbunov, L. A. & Kolevzon, V. 1993 Liquid metal flow in a finite-length cylinder
with a rotating magnetic field. Exps. Fluids 15, 411–416.

Gelfgat, Y. M., Priede, J. & Sorkin, M. 1991 Numerical simulation of MHD flow induced by
magnetic field in cylindrical container of finite length. In Proc. 1st. Intl Conf. Energy Transfer
in Magnetohydrodynamic Flows, Cadarache (ed. A. Alemany, G. Marbach & Ph. Marty), pp.
181–186. Plenum.

Grants, I. & Gerbeth, G. 2001 Stability of axially symmetric flow driven by a rotating magnetic
field in a cylindrical cavity. J. Fluid Mech. 431, 407–425.

Lingwood, R. J. 1997 Absolute instability of the Ekman layer and related rotating flows. J. Fluid
Mech. 331, 405–428.

Martin Witkowski, L., Marty, P. & Walker, J. S. 2000 Multidomain analytical-numerical solution
for a rotating magnetic field with a finite-length conducting cylinder. IEEE Trans. Magn. 36,
452–460.

Martin Witkowski, L., Walker, J. S. & Marty, P. 1999 Nonaxisymmetric flow in a finite-length
cylinder with a rotating magnetic field. Phys. Fluids 11, 1821–1826.

Mazuruk, K., Ramachandran, N., Volz, M. P. & Gillies, D. 1997 Study of frequency effects of a
rotating magnetic field on fluid flow in vertical cylinders. In Materials Research in Low Gravity
(ed. N. Ramachandran), vol. 3123, pp. 262–270. Soc. of Photo-optical Instrum. Engng, San
Diego.

Moffatt, H. K. 1965 On fluid flow induced by a rotating magnetic field. J. Fluid Mech. 22, 521–528,
and corrigendum 58 (1973), 823.

Moffatt, H. K. 1978 Rotation of a liquid metal under the action of a rotating magnetic field. In
Proc. Second Bat–Sheva International Seminar, Beersheva (ed. H. Branover & A. Yakhot), pp.
45–62. Israel Universities Press.

Mullin, J. B. 1958 On the use of electromagnetic stirring in zone refining. J. Electron. Control 2 (4),
170–174.

Priede, J. 1993 Theoretical study of a flow in an axisymmetric cavity of finite length, driven by a
rotating magnetic field. PhD thesis, Institute of Physics, Latvian Academy of Science, Salaspils.

Sørensen, J. N. & Phuoc Loc, T. 1989 High-order axisymmetric Navier–Stokes code: Description
and evaluation of boundary conditions. Intl J. Numer. Meth. Fluids 9, 1517–1537.

Spitzer, K. H. 1999 Application of rotating magnetic fields in Czochralski crystal growth. Prog.
Cryst. Growth Charact. Mat. 38 (1–4), 39–58.

Spotz, W. F. 1998 Accuracy and performance of numerical wall boundary conditions for steady,
2d, incompressible streamfunction vorticity. Intl J. Numer. Meth. Fluids 28, 737–757.

Sweet, R. 1977 A cyclic reduction algorithm for solving block tridiagonal systems of arbitrary
dimensions. SIAM J. Numer. Anal. 14, 706–720.

White, F. 1999 Fluid Mechanics, 4th edn. McGraw-Hill.


